MCV4U Homework

Critical Points, Local Maxima & Local Minima

Section A: Problem-solving Questions

1. Find the critical points for each function. Use the first derivative test to determine whether the critical point is a local maximum, local minimum, or neither.

(a).
$$f(x) = (x - 5)^{\frac{1}{3}}$$

(b).
$$f(x) = \frac{2x}{x^2+9}$$

- 2. Consider the function $f(x) = 3x^4 + ax^3 + bx^2 + cx + d$.
 - a. Find constants a, b, c, and d such that the graph of f will have horizontal tangents at (-2, -73,) and (0, 9).
 - b. There is a third point that has a horizontal tangent. Find this point.
 - c. For all three points, determine whether each corresponds to a local maximum, a local minimum, or neither.
- 3. For a particular function $f'(x) = x^3 2x^2$.
 - a. For which values of x does f'(x) = 0?
 - b. Find the intervals of increase and decrease for f(x).
- 4. Determine values of a, b and c such that the graph of $y = ax^2 + bx + c$ has a relative maximum at (3, 12) and crosses the y-axis at (0, 1).
- 5. A section of roller coaster is in the shape of $f(x) = -x^3 2x^2 + x + 15$ where x is between -2 and +2.
 - a. Find all local extrema and explain what portions of the roller coaster they represent.
 - b. Is the highest point of this section of the ride at the beginning, the end, or neither?

Answer Key

1. a)
$$f'(x) = \frac{1}{3(x-5)^{\frac{2}{3}}}$$

When
$$f'(x) = undefined, x = 5$$

$$f(5) = 0$$

- 1	f'(x) = 0	+ 1	Nature
f'(4) = -1	5	f'(6) = 1	- 0 +

 \checkmark (5, 0) is a cusp.

b)
$$f'(x) = \frac{2(9-x^2)}{(x^2+9)^2}$$

When
$$f'(x) = 0$$
, $x = \pm 3$

$$f(3) = \pm \frac{1}{3}$$

- 1	f'(x) = 0	+ 1	Nature
$f'(2) = \frac{2}{5}$	3	f'(4) = -0.0224	+ 0 -
f'(-4) = -0.0224	- 3	f'(-2) = 0.059	- 0 +

 $(3,\frac{1}{3})$ is maximum point and $(-3,-\frac{1}{3})$ is a minimum point.

2.
$$f'(x) = 12x^3 + 3ax^2 + 2bx + c$$

a)
$$a = -4$$
, $b = -36$, $c = 0$

b)
$$(3, -198)$$

c) Local minimum:
$$(-2, -73)$$
 and $(3, -198)$
Local maximum: $(0, -9)$

3. a)
$$x = 0$$
 and $x = 2$

b) Decreasing intervals:
$$(-\infty, 2)$$
 Increasing intervals: $(2, \infty)$

4.
$$a = -\frac{11}{9}$$
, $b = \frac{22}{3}$, $c = 1$

5. The coaster starts down a hill from x=-2, reaching a local minimum at the bottom of a hill at (-1.55, 12.37). It then increases height until it reaches a local maximum at the top of a hill at (0.22, 15.11). It then continues downward until x=2.