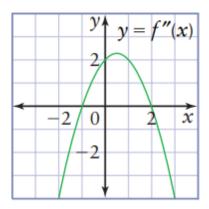
Grade 12 Calculus and Vectors MCV4U Chapter 4 Quiz 3

Section A: Multiple Choice Questions

- 1. What does the second derivative tell you about a function? (1K)
 - A). Whether the function is increasing or decreasing
 - B). Whether the graph is above or below the x-axis
 - C). The concavity of the graph
 - D). The slope of the tangent line
- 2. A point of inflection occurs when: (1K)
 - A). f'(x) = 0
 - B). f(x) = 0
 - C). The function has a local maximum
 - D). The sign of f''(x) changes
- 3. Which of the following must be true at a point of inflection? (1K)
 - A). f''(x) = 0 and f'(x) = 0
 - B). f'(x) = 0 and f''(x) > 0
 - C). f''(x) changes sign
 - $\mathsf{D)}.\ f(x)\,=\,0$
- 4. A function has a local maximum at x = 3. Which of the following must be true? (1K)
 - A). f'(3) = 0 and f''(3) > 0
 - B). f'(3) = 0 and f''(3) < 0
 - C). f'(3) > 0 and f''(3) < 0
 - D). f''(3) = 0 and f'(3) < 0

Section B: Problem-solving Questions

5. Given the graph of f''(x), state the intervals of concavity for the function f(x). Also indicate where any points of inflection will occur. (3T)



- 6. For the function $f(x) = x^4 6x^2 5$, find the points of inflection and the intervals of concavity. (4K)
- 7. Find the critical points of the function $h(x) = -6x^3 + 18x^2 + 3$ and classify them using second derivative test. (3K)
- 8. Use the algorithm for curve sketching to sketch the following function $f(x) = x^3 3x^2$.(4T)

Solutions

- 1. C). The concavity of the graph
- 2. D). The sign of f''(x) changes
- 3. C). f''(x) changes sign
- 4. B). f'(3) = 0 and f''(3) < 0
- 5. The function f(x) is concave up for -1 < x < 2 and concave down for x < -1 and x > 2. There are points of inflection when x = -1 and x = 2.
- 6. $f''(x) = 12x^2 12$

When
$$f''(x) = 0$$
, $12(x^2 - 1) = 0$

$$x = \pm 1$$

$$f(-1) = -10, f(1) = -10$$

 \therefore Points of Inflection = (-1, -10) and (1, -10)

	(− ∞, − 1)	x = -1	(-1,1)	x = 1	(1,∞)
<i>f</i> ''(<i>x</i>)	When $x = -2$, then +	0	When $x = 0$, then $-$	0	When $x = 2$, then +
f(x)	Concave Up	Inflection Point	Concave Down	Inflection Point	Concave Up

- f(x) is concave up over the intervals $(-\infty, -1) \cup (1, \infty)$ and concave down over the intervals (-1, 1).
- 7. $h'(x) = -18x^2 + 36x$

When
$$h'(x) = 0$$
, $18x(2 - x) = 0$

Critical numbers: x = 0 and x = 2

$$h(0) = 3, \qquad h(2) = 27$$

Critical points defined

$$h''(x) = -36x + 36$$

When
$$x = 0$$
, $h''(0) = 36 > 0$

Concave up ∴ minimum

When
$$x = 2$$
, $h''(2) = -36 < 0$

Concave down : maximum

 $(0,3) \rightarrow \text{minimum point}$

 $(2,27) \rightarrow \text{maximum point}$

8. 0

$$y \text{ fint, } x=0$$

$$y=0$$

$$(0,0)$$

$$2c \text{ fint, } y=0$$

$$2c^{3}-3xc^{2}=0$$

$$2c^{2}(x-3)=0$$

$$2c=0 (01) 2c=3$$

$$(0,0)$$

$$(3,0)$$

(0,0)

(a)

$$f''(2x) = 6 > c - 6$$

at $2c = 2$
 $f''(2) = 6 > 0$
 $f''(0) = -6 < 0$
 f'

Interval	oc<1 1	x=1	oc>1
f,,(2c)	3c=0 f'(0) = -GCO	Ø	x=2 f''(2) = 6>0
facs	\land	1.0	\setminus \cup

