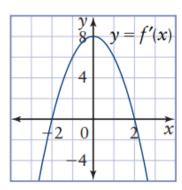
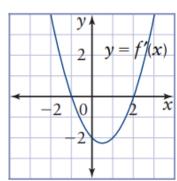
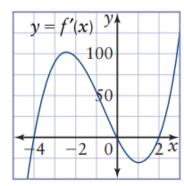

MCV4U Homework

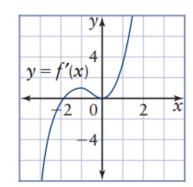
Increasing and Decreasing Functions


Section A: Short Questions

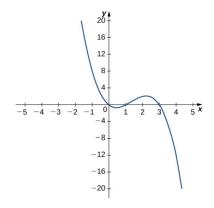
1. Given each graph of f'(x), state the intervals of increase and decrease for the function f(x).


(a).

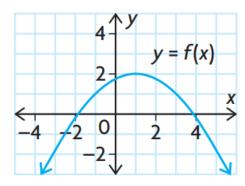

(b).


(c).

(d).



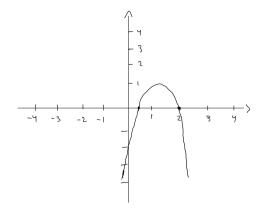
(e).



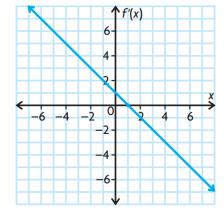
2. Given f(x), sketch f'(x). State the intervals of increase and decrease for the function f'(x).

(a).

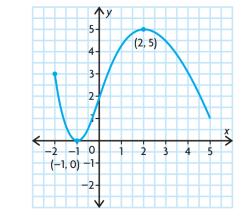
(b).

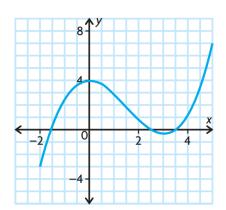


Section B: Problem-solving Questions


- 3. Sketch a graph of a function that is differentiable on the interval $-2 \le x \le 5$ and that satisfies the following conditions:
 - The graph of f passes through the points (-1, 0) and (2, 5).
 - The function f is decreasing on -2 < x < -1, increasing on -1 < x < 2, and decreasing again on 2 < x < 5.
- 4. Sketch a graph of the function g that is differentiable on the interval $-2 \le x \le 5$, decreases on 0 < x < 3, and increases elsewhere on the domain. The absolute maximum of g is 7, and the absolute minimum is -3. The graph of g has local extrema at (0,4) and (3,-1).
- 5. Find the intervals of increase and decrease for $f(x) = x^3 + 3x^2 + 3x$, without sketching a graph.

Answer Key


- 1. a) Increase: (-∞,∞) Decrease: DNE
 - b) Increase: $(-\infty,0)$ Decrease: $(0,\infty)$
 - c) Increase: (0,∞) Decrease: (-∞,0)
 - d) Increase: $(-\infty, -2) \cup (1, \infty)$ Decrease: :(-2, 1)
 - e) Increase:(- ∞ ,- 1) U (1, ∞) Decrease::(- 1,1)
- 2. a)


b)

3.

4.

5.

$$f(x) = xc^{3} + 3xc^{2} + 3xc$$

$$f'(x) = 3xc^{2} + 6xc + 3$$

$$f'(x) = 0$$

$$3xc^{2} + 6xc + 3 = 0$$

$$xc^{2} + 2xc + 1 = 0$$

$$(xc + 1) (xc + 1) = 0$$

$$xc = -1$$

1	interval	(-∞,-1)	oc=-1	(-1,∞)
	f ['] C×j	x=-2 {'(-2)=3>0	O	f,(0) = 370 x=0
	f (oc)	Increasing	Flat	Increasing

Increasing at intervals $(-\infty, -1) \cup (-1, \infty)$